Maintenance Information for Remote Commanding

5 October 2006

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

Chapter 1: Remote commanding maintenance documentation 1

1 Remote commanding maintenance
documentation

This document is intended to aid programmers who maintain and enhance the remote
commanding applications. It helps to be familiar with the user’s guide before reading this
document.

Source code for all applications is in src/javadisplay/remcmd.
Javadoc
Javadoc html files are a good source of information on these applications. Unfortunately,
javadoc in java 1.2 must be used to get useful files and as of this writing javal.2 is not
installed on all of our machines. The script ‘runjavadoc’ can be used to generate javadoc
files, but you may have to modify the path it uses to locate javadoc 1.2.
package rememd
All source files for these applications declare that they are part of the "remcmd" package.
As a result:
e C(lass files can be executed only when they’re in a directory named "remcmd". Make
install copies class files to classes/remcmd
e $CLASSPATH must contain the parent of the remcmd directory.
e The package name must be used when invoking an application, for example java
remcmd .RecvCmd.

e When a source file inside the package references a class or interface outside the package,
an import statement is required. Only public methods and members can be referenced.

Application modules
Inter-application message formats
Threads
Creating tar files
Installation details
RelayCmd information

5 October 2006

Chapter 2: Application Modules 2

2 Application Modules

These applications were developed in response to a request from the Ultra Long Distance
Balloon mission, but it seems likely that other missions will be interested in them in the
future. It is inevitable that those missions will want different functionality from what ULDB
wanted. To deal with this need for flexibility, parts of the applications that seem most likely
to change have been isolated into modules and an inteface has been defined for each. At
runtime, the name of the class that will implement each interface can be specified in a
command-line argument.

The following module interfaces have been defined:

e Encryptor - used by SendCmd and RecvCmd
This interface is currently implemented by classes GPG1, which uses gpg for encryp-
tion, and NoEncryption, which doesn’t encrypt data. NoEncryption might be used
when both SendCmd and RecvCmd are on the same secure network. Other classes im-
plementing of this interface might use some encryption package other than gpg. GPG1
is the default for both SendCmd and RecvCmd.

e Decryptor - used by SendCmd and RecvCmd
This interface is implemented by classes GPG1 and NoDecryption. GPG1 is the default
for both SendCmd and RecvCmd.

e Log - used by all three applications to write log files.
This interface is implemented by classes Logl, which lets the user set the log file name
and directory, and NoLog, which does not create a log file. Logl is the default for
SendCmd and RecvCmd. NoLog is the default for RelayCmd.

e CmdBuilder - used in SendCmd to let users create STOL commands.
Two classes currently implement this interface.

1. TextFieldBuilder presents the user with a text input field into which the command
is typed.

2. MenuBuilder extends TextFieldBuilder and displays a menu with a button for each
command. After the command is built, the TextFieldBuilder frame is displayed so
the user can check the final form of the command, add comments or change the
default expiration interval.

¢ RecvComm - used in SendCmd to communicate with RecvCmd.
RecvComml1 is the only class to implement this interface at the moment. It com-
municates with RecvCmd over a TCP/IP socket. Other implementations might user
datagrams or mail. The class used by SendCmd as its RecvComm module must be
compatible with the class used by RecvCmd as its SendComm module.

¢ SendCmdDB - used in SendCmd to maintain a database of commands that have been
sent recently.
This interface is currently implemented by NoSendDB, which does not maintain any
database, and SendDB1. The benefit of maintaining a database is that recent com-
mands can be displayed, allowing the user to examine all messages concerning a com-
mand and to ping RecvCmd for a command’s status. SendDB1 is the default.

¢ SendComm - used in RecvCmd to communicate with SendCmd.
SendComm1 is the only class currently implementing this interface. It uses TCP/IP

5 October 2006

Chapter 2: Application Modules 3

sockets to communicate with SendCmd, and is compatible with RecvComm]1, used by
SendCmd.

e ItosComm - used in RecvCmd to pass commands STOL.

TtosComml is the only class currently implementing this interface. It passes commands
to STOL over the stol fifo.

¢ RecvCmdDB - used in RecvCmd to maintain the database of commands received.
This interface is implemented by classes NoRecvDB, which does not maintain any
database, and RecvDB1. RecvDB1 maintains a record of all actions concerning each
command and determines when a command expires and can no longer be accepted.

e Acceptor - used in RecvCmd to allow the user to accept or reject commands.
This interface is implemented by classes AcceptAll and Acceptorl. AcceptAll imme-
diately accepts all commands received and passes them to STOL. Accpetorl displays
a list of commands received and does not pass a command to STOL until the user
explicitly accepts it.

e ClosedItosComm - used in RelayCmd to communicate with RecvCmd or another Re-
layCmd
This interface is implemented by class RelayComm1, which can be either server or host
in the connection. It uses a TCP/IP socket that is kept open even when no data is
being exchanged.

5 October 2006

Chapter 3: Inter-application message formats 4

3

Inter-application message formats

This chapter describes the format of messages sent between applications. At the moment,

these messages are sent over TCP/IP sockets.

3.1 Fields present in all messages

All messages start with six digit characters. That integer gives the length of the remain-

der of the message. These six characters are never encrypted, but when encryption is used
everything following them is encrypted.

After decryption, all fields following the six-digit length field are terminated by line

breaks. Encryption inserts canonical line breaks, so when the message is decrypted, breaks
appropriate for the receiving system are inserted.

The first two fields following the message length are always:

e The version number of the sending application in floating-point format. This field is

ignored at the moment but might be used in the future after a change in message
format.

An integer giving the message type. Four types are currently defined: SendCmd
sends COMMAND _MSG and PING_MSG. RecvCmd sends PING_REPLY and COM-

MAND _INFO _MSG. Integer constants for those four types are defined in RemcmdU-
til.java

3.2 COMMAND_MSG message format

SendCmd sends STOL commands to RecvCmd in COMMAND _MSG messages. Fields

following the message type field are:

1.

The TP address to which replies to this command will be sent. That is normally the
host where SendCmd is running.

2. The port number to which replies are sent.

3. The name of the gpg user whose public key should be used to encrypt replies to this

command.

4. The text of the STOL command.
5. An ID string for the command.

6. An integer giving the expiration interval for the command in minutes, or one of the

constants Cmd.NO_EXPIRATION or Cmd.DEFAULT_EXPIRATION.

7. The name of the sender. This may be the empty string.

An integer giving the command’s current status. In COMMAND _MSG, this is usually
ENCRYPTED. Status constants are defined in Cmd.java. This field is not useful
in COMMAND _MSG messages but is included so that command descriptions in all
messages contain the same fields. This allows a constructor for class Cmd to create a
Cmd object from any message.

An optional, multi-line comment.

5 October 2006

Chapter 3: Inter-application message formats 5

10. The end-of-command string defined in RemcmdUtil.endCmdString
Fields 4 through 9 are created by Cmd.toMsg(). The remaining fields are created by
SendCmd.processCmd();

3.3 PING_MSG message format

SendCmd sends a PING_MSG when the user clicks the "Check connection to ITOS" or

"Ping this command" buttons. Fields following the message type field are:

1.

The IP address to which replies to this ping will be sent. That is normally the host
where SendCmd is running.

The port number to which replies are sent.

The name of the gpg user whose public key should be used to encrypt replies to this
ping.

Text of the command being pinged. If This ping was initiated by the "Check connection
to ITOS" button, this field is empty.

The ID string for the command being pinged. If this ping was initiated by the
"Check connection to ITOS" command, this field contains the reserved string
Ping. CONNECTION.

Ping defines two other reserved strings, SENDER and HOST. SENDER would request
information on all commands sent by a particular person, regardless of the host. HOST
would request information on all commands sent from the host. These functions have
not been implemented but could be if they were requested.

The name of the sender. This may be the empty string.

Fields 4 through 6 are created by Ping.toMsg(). The remainder are created by Send-

Cmd.processPing().

3.4 PING_REPLY message format

RecvCmd sends a PING_REPLY message in response to every PING_MSG it receives.

Fields following the message type are:

1.

An integer giving the number of commands described in this message. At the moment
this field is always "1". It will be greater than one if pings are implemented that request
information on all commands sent from a host or by a user.

For each command, fields 4 through 10 described above for COMMAND_MSG are
inserted.

When the ping asked about the connection to ITOS, the command text and ID (fields
4 and 5) are set to Ping. CONNECTION. A string describing the connection to ITOS
is put into the comment field (field 9).

5 October 2006

Chapter 3: Inter-application message formats 6

3.5 COMMAND_INFO_MSG

RecvCmd sends a COMMAND_INFO_MSG when the operator sends a reply to the
sender and when there is an important change in a command’s status, such as when it is
accepted or rejected.

Fields following the message type are identical to those in a PING_REPLY message. If

the operator is sending a reply, the text of the reply is put into the command’s comment
field (field 9).

5 October 2006

Chapter 4: Threads in remcmd applications 7

4 Threads in remcmd applications

SendCmd threads

RecvThread
SendCmd and RecvCmd open a socket connection each time one has a mes-
sage to send and close the socket immediately. RecvComml1, the module in
SendCmd that takes care of communications with RecvComm, starts a single
RecvThread object that waits for connections on a server socket, reads one
message over the socket and closes the client socket. The message is put into
the decryption/encryption job queue.

SendDBThread
SendDBI1, a database module for SendCmd, starts a single SendDBThread
that occasionally looks through the database for commands that are past their
deletion times. If any are found, they are deleted from the database and the
database is saved to disk. This search is done every five minutes at present.

RecvCmd threads

FifoWriterThread
TtosComm1, the module in RecvCmd that passes commands to STOL, starts a
FifoWriterThread each time it wants to send a command to STOL. The thread
opens a FileOutputStream, writes a command to the stream and exits. This is
done because if the stol fifo exists but STOL is not running, the constructor of
a FileOutputStream to write to the fifo hangs indefinitely.

RecvDBThread
RecvDB1, a database module for RecvCmd, starts a RecvDBThread that occa-
sionally looks through the command database for commands that have expired
(can no longer be accepted) or that should be deleted.

SendThread
SendComm1, the module that communicates with SendCmd, starts a single
SendThread object that waits for connections from SendCmd clients. Each
time a client connects, the thread reads one message, closes the client socket
and puts the message into the job queue.

GPG1 threads

GPG1, the gpg encryption/decryption module used by both SendCmd and RecvCmd
creates these threads:

JobThread
Under some circumstances, encryption and decryption can take a substantial
amount of time, so they are done asynchronously. When GPG1 encrypts or

5 October 2006

Chapter 4: Threads in remcmd applications 8

decrypts text, it does so by putting a request into the job queue. One JobThread
object is started, which waits for jobs to be put into the queue and executes
them.

CatchOutput
GPG1.runGpg() starts a child process to run all GPG commands. Each time it
does so, it starts a CatchOutput thread to read anything GPG writes to stderr
and put it into a String. The thread exits when stderr is closed. The code
allows another thread to order a CatchOutput thread to exit prematurely, but
I don’t think this ability is being used.

RelayCmd threads

ServerThread
RelayComml is the module in RelayCmd that communicates with RecvCmd
or with another RelayCmd. If RelayCmd will be the server on this connection,
RelayComm]1 starts a ServerThread that opens a socket and waits for the client
to connect. ServerThread then reads all messages that come over the socket
and puts them into the job queue. If the socket connection is broken, the thread
goes back to waiting for the client to connect.

ClientThread
If RelayCmd will be the client on this connection, RelayComm]1 starts a Client-
Thread that tries to connect to the server every 10 seconds. After connecting,
the thread reads all messages from the server and puts them into the jobqueue.
If the socket connection is broken, the thread goes back to trying to connect
every 10 seconds.

5 October 2006

Chapter 5: Creating tar files 9

5 Creating tar files

The following paragraphs are only here for historical documentation purposes. The
shell script ‘maketar’ no longer has to manually run because it is now part of the "rercmd"
make file. This make file builds the tar files listed below in the ‘$TCWDIR/pkgs’ directory
which is just below the ITOS root directory and is created when "make install" is run.

The shell script ‘maketar’ in ‘$ITOS_DIR/src/javadisplay/remcmd’ can be used to
create tar files. It accepts the following options:
gpgdir <path>

Names the directory where gpg executables are stored. Executables should be
named gpg.<os>, where <os> describes the executable’s operating system. <os>
will be used to create the tarfile name. Example names:

o gpg.i386-FreeBSD-3.2
e gpg.i386-Sun0S-5.6
e gpg.sparc-Sun0S-5.7
Default is ‘$ITOS_DIR/src/javadisplay/remcmd/gpgbin’, where several exe-
cutables have been committed to cvs.
classes <path>

Names a directory containing subdirectory remcmd, which contains the remote
commanding class files. Default is ‘¢ITOS_DIR/classes’

sxdir <path>

Names the directory containing the sx class files. They are used to
parse and check strings entered as submnemonic values. Default is
‘$ITOS_DIR/src/javadisplay/sx’

scripts <path>

Names the directory containing scripts and other files that go into the tar files.
Default is ‘$IT0S_DIR/src/javadisplay/remcmd’

tempdir <path>

Names the directory where files are put during construction of tarfiles. If di-
rectory <path> currently exists, it is emptied. Default is ‘. /tar_temp’

tardir <path>

Names the directory where tar files generated by this script are put. Default is
the current directory.

Note: All directories must be entered as absolute paths, not paths rooted at the current
directory or beginning with ’~’.

One tarfile is made for each gpg executable in gpgdir and an additional tarfile is made
without a gpg executable.

So a set of tarfiles could be made like this:

cd $ITOS_DIR/src/javadisplay/remcmd
maketar tardir $ITOS_DIR/src/javadisplay/remcmd/tars

In this example, ‘maketar’ could be run without the tardir option, but then the tar
files would be put into remcmd along with all the .java, .class and other files.

5 October 2006

Chapter 6: Installation details 10

6 Installation details

These applications attempt to be as flexible as possible. They don’t assume where gpg
is installed or where its key files are stored. They don’t make any assumptions about where
the class files reside or where the run scripts or argument files reside. They don’t assume
that argument files will be used.

The INSTALL script is provided for users who don’t care where things are put and just
want to get started with a minimum of hassle. INSTALL assumes that files are left in the
directories they have in the tar files. That is,

e Runscripts, argument files and INSTALL are all in one directory.

e The gpg executable and startup key files are in a subdirectory of that directory, named
¢)

grg’-
e The sx class files and the gnu jar file are in another subdirectory of that directory
named ‘classes’.

e Remcmd class files are in a subdirectory of ‘classes’ named ‘remcmd’.

INSTALL does the following:

e Edits all run scripts by setting $argDir to the current directory, meaning the argument
files are in the same directory as the run scripts.

e Edits the rungpg script by setting $gpgDir to the gpg subdirectory.
¢ Edits sendargs and recvargs by setting both gpgpath and keydir to the gpg subdirectory.

At the moment, the source files for remote commanding are included in ITOS releases
and "make install" creates the class files and puts them into classes/remcmd. So strictly
speaking, no remcmd tar file is needed to use remote commanding on a machine where

ITOS has been installed.

However, setting up argument files and shell scripts with the INSTALL script is much
easier than doing it by hand, and that script works only when files are in the directory
structure contained in the tar files, so you may want to install remote commanding from a
tar file even on ITOS machines.

5 October 2006

Chapter 7: RelayCmd 11

7 RelayCmd

Some parts of RelayCmd are less clear than they might be, and this chapter tries to
explain them.

RelayCmd receives messages from two sides, one side toward RecvCmd, the other toward
SendCmd applications. On both sides, there may be one or more additional instances of
RelayCmd before the other applications. RelayCmd’s job is simply to forward messages
received on one side to the application on the other side. RelayCmd does not decrypt
messages.

A complication is that some information must be passed with these messages that is
not normally sent between applications. For example, the RelayCmd that gets a message
from a SendCmd knows SendCmd’s IP address. That must be sent along with the message
to RecvCmd. (The message contains an IP address, but it is sometimes "localhost", not
very useful.) Similarly, when RecvCmd decrypts the message, it finds the port on which
SendCmd is waiting for a reply. That must be sent with the message back to the RelayCmd
that will finally send it to SendCmd.

As a consequence, messages going in the two directions have slightly different structures.
Messages going toward RecvCmd are received in IncomingMsg objects, which contain two
members, the IP address of the SendCmd where the message originated and an encrypted
block of text. Messages going toward SendCmd are received in IncomingMsg2 objects,
which have a third field, the port number where the SendCmd application is waiting for it.

Class RelayComm]1 is used at both ends of all sockets between RecvCmd and RelayCmd
and between two RelayCmd applications. To do that, it implements interfaces SendComm
and ClosedItosComm. When it sends an IncomingMsg or IncomingMsg2 over a socket it
uses RemcmdUtil.sendCryptText(), the method used by all remcmd applications. That
method always sends six decimal characters and then a block whose length is given by the
six characters. RemcmdUtil.sendCryptText() is called twice to send an IncomingMsg or
IncomingMsg2. The block in the first call contains a normal application message. The
block in the second message contains a host address and optionally a port number.

5 October 2006

